31 Aralık 2012 Pazartesi

Breast Cancer Diagnosis Could Benefit Greatly From Spectroscopy



Breast Cancer Diagnosis Could Benefit Greatly From Spectroscopy31 Dec 2012-nbsp;-nbsp;-nbsp;

The analysis of small deposits of calcium in breast tissue can help differentiate cancerous and benign tumors, but it is sometimes not easy

to make such a diagnosis. Now a team of researchers in the US believes a new method that uses a special type of spectroscopy to locate calcium

deposits during a biopsy, could greatly improve the accuracy of diagnosis.

The team, from Massachusetts Institute of Technology (MIT) and Case Western Reserve University (CWRU), writes about the work that led them to

this conclusion in a paper published online in Proceedings of the National Academy of Sciences on 24 December.

Calcium Deposits

Microcalcifications, or small deposits of calcium, form when calcium from the bloodstream deposits onto degraded proteins and fats left behind by

injured and dying cells.

They can be a telltale sign of breast cancer, but most tumors that contain them are benign.

Microcalcifications are most often seen in breast tumors, but they can also occur, albeit rarely, in other types of cancer, says co-senior author

Maryann Fitzmaurice, senior research associate and adjunct associate professor of pathology and oncology at CWRU, in a statement.

Calcification also plays a major role in atherosclerosis, or hardening of the arteries.

Biopsy Can Be Long and Arduous Procedure

When microcalcifications show on a mammogram, doctors do a follow-up biopsy of the suspect tissue to test for cancer.

Figures show that in around 1 in 10 cases with such microcalcifications, the tumor is cancerous, so the follow-up biopsy is critical.

During the procedure, the radiologist takes X-rays from three different angles to locate the tiny calcium deposits, then inserts a needle into the

tissue and removes up to 10 tissue samples.

A pathologist then tests these samples to see if they contain microcalcifications.

But in 15 to 25% of cases, it is not easy to locate and take a tissue sample accurately, resulting in an inconclusive diagnosis. This means the

patient has to have more X-rays and undergo more invasive surgery to retrieve further samples.

But, as Fitzmaurice explains, this second attempt is rarely successful:

"If they don't get them on the first pass, they usually don't get them at all."

"It can become a very long and arduous procedure for the patient, with a lot of extra X-ray exposure, and in the end they still don't get what

they're after, in one out of five patients," she adds.

New Method Uses Special Type of Spectroscopy

Spectroscopy is a way of determining the composition of a material by studying how it absorbs or scatters radiation such as light. It is often used in

physical and analytical chemistry, and there are many applications now in medicine too.

One of the challenges in applying the technique to medicine is cost and speed: often the equipment is very expensive and slow to deliver results in

"real time".

For the past several years, the MIT and CWRU team has been working on overcoming this challenge to help the radiologist determine, in a matter

of seconds, if the tissue contains microcalcifications or not.

At first they tried a method based on Raman spectroscopy, which uses light to measure energy shifts in molecular vibrations, revealing precise

molecular structures. The advantage of this method is that it is very accurate at identifying microcalcifications. But the disadvantage is the

equipment is expensive and the analysis takes a long time.

In this latest study, the researchers describe how they turned to another method, called "diffuse reflectance spectroscopy", and found it gave

results just as accurately as Raman spectroscopy, but much faster and at less cost.

Co-lead author Narahara Chari Dingari, a postdoc at MIT, says:

"With our new method, we could obtain similar results with less time and less expense."

97% Success Rate with Diffuse Reflectance Spectroscopy

Diffuse reflectance spectroscopy collects and analyzes light after it has interacted with the sample. This gives a unique "spectrographic

signature".

In their PNAS paper, the authors describe how they examined 203 tissue samples within minutes of their removal from 23

patients.

Each sample could be one of three types, each with its own spectrographic signature. It could be healthy, it could contain lesions with no

microcalcifications, or it could contain lesions with microcalcifications.

By analyzing these patterns, the team produced a computer algorithm that showed a success rate of 97% in identifying tissue with

microcalcifications.

Jaqueline Soares, another lead author and MIT postdoc, suggests the changes in the way the different tissues absorb light are probably due to

altered levels of specific proteins (elastin, desmosine and isodesmosine) that are often cross-linked with calcium deposits in diseased tissue.



Simple Technology with High Accuracy Is a "Good First Step"

James Tunnell is an associate professor of biomedical engineering at the University of Texas and was not involved in the study. He describes the

study as a "good first step" toward a system that could have a big impact on breast cancer diagnosis.

"This technology can be integrated into the system that is already used to take biopsies. It's a very simple technology that can get the same

amount of accuracy as more complicated systems."

The team envisages their technique being used by radiologists to provide enhanced "real time" guidance to current biopsy procedures.

Because it provides the analysis results within seconds, the new technique could help the radiologist to move the needle to another spot before

taking any samples.

The researchers are planning to carry out a new study to test the approach in "real time": as biposies are being carried out in

patients.


Funds from the National Institutes of Health, the National Institute of Biomedical Imaging and Bioengineering and the National Cancer Institute

helped finance the study.




Written by Catharine Paddock PhD









Copyright: Medical News TodayNot to be reproduced without permission of Medical News Today


Hiç yorum yok:

Yorum Gönder